Skip to main content


  • 20 helpers

Venture Versity is a new funded collaboration between Leicester, Loughborough and De Montfort Universities plus the wider local entrepreneurial community to turn research ideas into spin-outs and business collaborations.

Are you sitting on a discovery or idea that might have a commercial angle but you don’t know what to do next? Click below to submit your idea.

Fancy working with some of the listed projects? Click “I’m Interested” underneath a project to express your interest. This is open to academics, students and the wider business community.

  • Leicester & Leicestershire
  • Website
C-Steps: Effective learning and engagement

Teaching Fellow

Embark on a transformative journey with C-Steps, a web application designed to enhance cognitive abilities in learners while providing valuable insights for teachers. Positioned for integration into Learning Management Systems (LMS), C-Steps seeks to revolutionise learning and teaching practices, catering to education providers, training providers, higher education institutions, and corporate entities.

Development opportunities abound as C-Steps can seamlessly become an integral part of any LMS, offering a scalable solution for widespread implementation. The primary challenge lies in clarifying the potential patentability of the innovation as a method or process, followed by refining the platform for an optimal user experience.

To advance this visionary project, key resources such as an IP expert, development manager, and initial server space (already secured with the university IT team) are essential. Collaboration opportunities are extensive, welcoming partnerships with IP experts, education providers, training providers, and corporate entities. Join us in shaping the future of learning and teaching through technological innovation, making a lasting impact across various sectors.

Novel efficient method of failure monitoring for predictive maintenance applications

Dr Eve Zhang, Senior Lecturer in Digital Engineering

This technology uses real time Acoustic Emission (AE) measurements and a novel AI technique to achieve an intelligent online monitoring system to optimise industrial processes, e.g., predictive maintenance of plants and machines, etc.
This technology will add a great value to the optimisation of industrial processes by increasing efficiency and reducing waste. For any process, this class of AE-AI systems does not exist as present, and its novelty will create traction for commercial benefits.
This novel AI technique creates a unique bio-plausible neural network technique and includes realistic representation of the hearing mechanism.

LUCID – Concussion Identification app

Dr. Thom Wilcockson, Senior Lecturer in Psychology

We have developed a portable smartphone app which can be used on any smartphone by anyone to measure concussion. It can indicate whether someone has a concussion pitch-side during sports matches or in hospitals, and may also be useful for any industry where concussion may occur e.g. Theme parks, construction, etc.

Simplified manufacturing method of porous micro particles for drug delivery and C capture applications.

Dr Marijana Dragosavac, Senior Lecturer in Chemical Engineering

Uniform spherical silica particles (up to 100µm) with controlled porosity can be used in drug delivery applications to enhance the delivery of drugs and these custom-made silica particles can be used for capturing and storing hydrogen or CO2 to address challenges related to energy and environmental sustainability.
Traditionally, porosity within these silica particles is made using surfactants which are harmful to the environment. Coupling emulsification methods and Dr. Dragosavac’s knowledge on formulation, we have developed a manufacturing method capable of producing silica particles (up to 100 μm ) with precisely tuned particle sizes and internal structure, without the use of surfactants. This simplifies the manufacturing process and enables us to tailor the particles for a particular application such are drug delivery, insulation, chromatography, and hydrogen or CO2 storage.

Novel material and a method to sense chemical ions for medical, agriculture and defence applications.

Dr Stephen Butler, Reader in Supramolecular Chemistry and Chemical Biology, Dr Helen Willcock, Senior Lecturer

We have developed a new polymeric material that can be embedded with a variety of sensors to detect chemical ions. Our patented technology can be integrated into a range of existing devices for monitoring ion levels in samples – in real-time.
Our technology creates a range of benefits for following applications.
Medical – Point-of-care diagnostics to monitor blood content
Agriculture – Pesticide and herbicide monitoring
Environment – Drinking water analysis and sampling
Food and drink – Quality control and contaminant detection
Security and defence – Stand-off detection of harmful agents

Efficient integration of drones & ground bots in adverse weather conditions for agriculture applications

Dr Jingjing Jiang, Senior Lecturer in Intelligent Mobility and Autonomous Vehicles

Safe and accurate landing is crucial for Unmanned Aerial Vehicles (UAVs). However, it is a challenging task especially when the altitude of landing target is different from the ground and when the UAV is working in adverse weather conditions, such as coasts where winds are usually strong and changing rapidly. This invention is an autonomous docking function for drones on a small size of ground robot in adverse weather conditions. It can achieve a robust landing accuracy and deal with complex turbulence arising during the docking process, attributed to variations in altitudes among components on the docking platform. This innovative solution provides a versatile application across a range of UAVs, including small and medium size drones.

The Validation Processor – a software for assay translation

Post-doctoral researcher in Cardiovascular Sciences

Unleash the future of biomedical assay validation with our groundbreaking software, the Validation Processor. Confronting the bottleneck in getting new tests to patients, our interactive graphical user interface, powered by R coding, accelerates the validation process from weeks to just minutes. With the ability to process all validation data in under 5 minutes, our software automatically generates crucial validation reports for national accreditation approval, revolutionising assay translation.

Securing copyright for the Validation Processor, we present a dual offering: a licensing model for monthly or one-time-use subscriptions and a consultancy service catering to laboratories worldwide. Our market spans NHS, research, and industrial laboratories, providing a standardised solution for validation, essential not only for patient testing but also for research trials and publications.

As we transition from development to deployment, funding is crucial for creating a company, launching a cloud-based server, and initiating marketing efforts. Join us in shaping the landscape of biomedical validation, and explore collaboration opportunities with experienced software deployers and marketing professionals. Together, let’s propel the Validation Processor towards widespread adoption and transformative impact.

Abhishek Tiwary & Richard Little

Associate Professor

The nonconventional ‘EnHANCE’ combi technology transforms and ‘enhances’ air quality to deliver clean and healthier indoor environments by simultaneously warming and cleaning the room (space).

The patent filed ‘EnHANCE’ energy efficient autonomous technology is suitable for use in the home, office and in agricultural settings e.g., in EU animal housing, poultry farms and grain storage, the latter for its mould and pathogen reduction potentials while reducing heating demands.

Successful delivery of this solution intertwines the UK government’s clean air strategic priority with the global net zero drive for low carbon indoor space warming

Noemi Nicole Piga

PhD Student

Rapid whole genome sequencing (rWGS) is a new technique of diagnostic application of genomics. In particular, it is used for children in neonatal intense care unit or pediatric intensive care unit. It is an expensive procedure, but it shows to be cost-effective in the long term when comparing to healthcare cost for undiagnosed children.
In UK this technique is included in the NHS Genomics Test Directory. However, this life-changing technology is not available in other countries of the world, especially in rural area.
In parallel, sequencing technology has been improved in recent year, and Oxford Nanopore is offering machine for portable sequencing.
My idea would be to test the application of portable genome sequencing in rural and emergency context, such as for critical-ill chrildren.
In doing so, I would need suggestions from people who have experience in rWGS as well as experts in portable human genome sequencing and data analysis. Finally, the team will benefit from the interaction with professionals and clinicians working in variant interpretation, especially for children diseases.
This idea is trying to use technology to bring state-of-the-art Genomics diagnostic in places in which it was not possible before.
If successful, this technique could be used in any part of the world with limited financial and infrastructure resource and it could be commercialized to National and International Health agencies, such as WHO.
The idea will also include a part of genomic education and engagement with the rural communities of interest.

Readiness for Workplace Bullying Interventions Assessment Tool (RWBIAT)

Dr Chloe Gough, Research Associate, Dr Iain Coyne, Reader in Organisational Psychology

This tool is a scientifically rigorous, employee-focussed measure that helps organisations to assess and understand how contextually ready they are to implement and uphold a workplace bullying intervention (WBI). Underpinning research demonstrates that organisations can identify, pre-change, areas that threaten to disrupt intervention success and then can curate better working environments that allows prospective change programmes to be successfully implemented.

This method takes a bottom-up approach and assesses employee perceptions of how structurally ready they believe their organisation is to implement a WBI. Analysis of data collated via the tool allows for the development of organisation-specific full diagnostic reports and bespoke action plans. Action plans contains a series of quick and simple tasks that address the contextual inefficiencies identified within reports. After embedding the suggested actions, organisations will facilitate a (more optimal) context for WBI implementation, which has been shown to improve prospective change success alongside employee support and engagement.

This tool is the first of its kind to address this issue in WBI practice. We have validated the measure scientifically and in practice. Since January 2023, the tool has been applied in several government departments and we would like to role this out to other public, private and third sector organisations.

EasyCardiogram: Developing low-cost home ECG kit for remote monitoring and wider screening

Lecturer in Biomedical Engineering

Revolutionizing remote cardiovascular diagnostics, our project addresses the urgent need for efficient solutions amplified by the pandemic’s impact. Leveraging modern electronic devices, our technology simplifies ECG data collection, transforming them into cost-effective diagnostic tools. Backed by MRC IAA and KEIPOC funding, we’re developing an ultra-low-cost ECG attachment in collaboration with the Renfrew Group. Designed for the NHS, our affordable ECG kit offers preventive care, aligning with their commitment to cost-effective healthcare. The disposable electrodes enhance convenience, making it ideal for both patients and healthcare providers. Catering to the US ECG equipment market projected to reach USD 3.31 billion by 2030, our project offers immense market potential. Challenges include regulatory compliance and securing funding. Collaboration opportunities abound, particularly with investors contributing to our transformative journey.

Join us in reshaping the future of remote cardiovascular diagnostics!

Royal Academy of Engineering Research Fellow

LOROs Hospice initiated contact with the University of Leicester with the goal of utilising their expertise to enhance engagement with patient surveys. The previous process was labour-intensive, requiring staff to manually upload patient feedback onto a system. However, through the collaborative efforts of Leicester staff, they designed a friendly and interactive survey with dignity driving its development. The new survey approach streamlined the process to aid retention, and its clever algorithm translated simple input into data suggesting real-time improvements for palliative care.

The LeicSurvey project welcomes collaborations to assist in scaling the business, guiding product development, and marketing the survey across various sectors. Funding could be used to employ consultants for adoption across numerous hospices nationwide and providing developmental opportunities for students to enhance the user interface and evaluate the tool.

Efficient manufacturing method of ceramic powders for 3D printing of complex structures.

Prof. Bala Vaidhyanathan, Professor of Advanced Materials and Processing

This invention is a method for concentrating advanced ceramic nanosuspensions, particularly zirconia nanosuspensions. Nano size powders have a tendency to agglomerate during processing resulting in nanocomponents which may have undesirable material properties. Our invention comprises of a method of generating dispersion of nano-powder particles in the liquid, reducing the liquid content to concentrate the nanosuspension and processing of advanced ceramics using pressure-less sintering method.
These suspensions and their powders can be made suitable for 3D printing complex ceramic components for applications in high temperature metal filtration, ballistic protection, energy storage, biomedical implants etc.

INDAF – App that generates automated student feedback reports for exams & assessments.

Dr Christof Leicht, Senior Lecturer in Exercise Physiology

In many University assessments, the only feedback students receive is an overall final mark. INDAF provides students with a more detailed account of their performance in the form of a feedback report. If an assessment can be divided into categories, performance can be rated for each category, giving students more specific information about their strengths and weaknesses within the assessment to improve their performance.
INDAF provides a feature that does not exist in Loughborough’s Learn platform (for students) and it offers users a tool to create customised feedback reports flexibly (than buying several apps to carryout different tasks). INDAF offers options to enable collaborative marking and to customise to a range of assessments. (eg. choice of question number, category number, or exam structure, assessments with optional questions vs essay assessments vs MCQ assessments).
INDAF has been successfully used for one year in three Loughborough University Schools and it could be rolled out more widely in higher education, or in any setting for which performance is assessed and fed back (so also has potential use in industry).

Jinyu Shan

Research Fellow/Chief Scientific Officer in molecular diagnostics product development

Our innovative approach utilises bacteriophage detection to identify bacteria with a sensitivity level that is ten times more efficient than traditional bacterial diagnostic methods. This considerable advancement signals the dawn of a new era in combating tick-borne diseases and bacterial infections in general and represents a transformative shift in global bacterial detection strategies. Our prototype showcases our capability to arm clinicians with a crucial tool for confirming bacterial infections, thereby heralding a revolution in medical diagnostics.
This progress not only enhances the accuracy of diagnoses but also facilitates the development of targeted therapies, marking a significant advancement in public health. It underscores the potential for profitability and a profound societal impact within the healthcare sector.
The commercial introduction of our phage-based test, in partnership with a European company, has significantly improved patient care by providing precise diagnoses for those suffering from tick-borne diseases, particularly those presenting with atypical symptoms. Continuous efforts to refine and streamline this method are anticipated to extend its utility, expanding the range of patients who can benefit from this innovative diagnostic technique. Such developments are critical in the management and treatment of tick-borne diseases, underscoring the essential role of innovative diagnostics in transforming patient care.

Personalised Space Technology Exercise Platform (P-Step)

Department of Cardiovascular Sciences

The University of Leicester and Leicester’s hospitals have secured £2 million from the UK Space Agency, in collaboration with NHS England and the European Space Agency, to develop a mobile app addressing the challenge of managing long-term conditions for the NHS’ 70th birthday. The Personalised Space Technology Exercise Platform (P-STEP) app will leverage space data and artificial intelligence to provide disease-specific exercise advice at a 10-metre resolution, including pollution warnings. Led by Professor André Ng, the Leicester team aims to combine high-resolution air quality data with personalised exercise guidance, addressing concerns for patients with conditions like heart disease and asthma. The app aims to simplify exercise prescriptions, improve well-being, and mitigate the impact of air pollution on health. The demonstrator project is being delivered by a broad team including clinicians, computer scientists and informatitions, health psychologists, primary care providers and environmental health and Earth observation experts in collaboration with EarthSense, a local SME.

Development of capture matrix and package for detection and diagnosis of respiratory disorders using mask

Professor Mike Barer, Clinical Microbiology and Honorary Consultant Microbiologist

Revolutionising respiratory infection diagnosis, our project introduces Facemask Sampling (FMS), a groundbreaking method for collecting and analysing microbes. Using strips of a sampling matrix (SM), FMS offers a non-invasive, well-accepted approach, allowing continuous sampling without disrupting normal activities. With successful applications in tuberculosis and COVID-19, FMS has the potential to replace current diagnostic samples for respiratory infections. The absence of intellectual property in the current polyvinyl alcohol (PVA) strips presents an opportunity to develop a novel SM, offering a major advancement in the field. Challenges include creating a soluble SM that doesn’t interfere with downstream assays. Resources needed include hydrogel expertise, aerobiology skills, funding for personnel and equipment, making collaboration opportunities with material scientists and aerosol experts crucial for project success.

Join us in shaping the future of respiratory infection diagnosis, with vast market potential in healthcare, workplaces, and personal health.

Improving balance for people living with Parkinsons

Neuroscience Psychology & Behaviour Lecturer

Embark on a groundbreaking journey with our innovative project, revolutionising Parkinson’s care. Addressing the pervasive issue of impaired balance in individuals with Parkinson’s, we introduce a pioneering solution that combines virtual reality exergaming with cutting-edge Electroencephalography (EEG) neurofeedback.

Our specially designed exergame, delivered in virtual reality, engages participants in a dynamic road-trip, challenging them to dodge incoming balls and catch stars to score points and unlock rewards. The game’s performance is intricately linked to real-time EEG brain activity, offering a unique approach to improving movement control and balance.

This project marks a significant leap forward in Parkinson’s rehabilitation, merging neural, physiological, and cognitive interventions. As we explore licensing agreements and potential patents, the project opens avenues for collaboration, including partnerships with Stroll UK, a recognised NHS supplier. To propel our vision further, we seek funding to expand our team, driving commercialisation efforts and developing additional therapeutic games. Join us in reshaping the landscape of Parkinson’s care, reducing falls, enhancing quality of life, and unlocking possibilities for broader clinical applications.

ProteoSwift Analytics: Fast-Tracking Breakthroughs in Clinical Protein Research

Post-doctoral Research Associate in Cardiovascular Sciences

Revolutionise medical test development with our innovative framework poised to break through the bottleneck in translating novel biomarkers from research to clinical use. Despite the potential of mass spectrometry to address traditional assay issues, only 1.5 new protein tests are approved in the US annually. Our model combines expertise in mass spectrometry assay development, clinical translation, and automated platforms, augmented by software for rapid biomarker translation.

Introducing a service offering hundreds of protein assays, our framework challenges the norm with cost-effective solutions. Unlike outdated libraries costing over £1000 per sample, we provide assays at <£50 with turnaround times of a few days. Our malleable mass spectrometry platform allows easy customisation or panel expansion.

With Know-How protection for our novel framework, a filed patent for SVEP1 assay, and copyright on incorporated software, we aim to spin out from the University of Leicester. Challenges include funding for company setup, website development, and marketing. Join us in advancing this project urgently, contributing skills in company development, website creation, branding, and marketing. Collaborate with us to stake our unique approach in the thriving global omics market.

Novel artificial neural network for engineering and financial monitoring applications

Dr Miguel Martínez García, Senior Lecturer in Machine Intelligence

This technology is a new class of artificial neuron that can be incorporated to various AI architectures, in particular for the case of Spiking Neural Networks (SNNs). The new neuron is termed Stochastically Delaying Spiking Neuron (SDSN) and its defining feature is that it is more robust to asynchronicities in the data.
SDSN is partly inspired by the asymmetrical delay effects introduced in the human auditory system prior to neural processing.
This technology can be applied to engineering process monitoring, financial data monitoring, etc.